Jupiter is five times as far from the sun as Earth and it receives 25 times less light.
For years, scientists concluded solar power at such distances was too weak to support a spacecraft. The size of the panels needed to energize a far-oft vehicle would be too cumbersome, and would create a host of problems, experts reasoned. [10 Alternative Energy Bets]
When scientists started planning for Juno in 2002, they compared the feasibility of solar power with the nuclear power options available at the time.
According to principal investigator Scott Bolton of the Southwest Research Institute in San Antonio, Tex., both methods would have required some modifications. The team opted to utilize solar power because they felt it had the least amount of development requirements.Graphene is not a semiconductor, not an oil paintings for sale , and not a metal,Als lichtbron wordt een Hemorrhoids gebruikt,
Bolton noted the many challenges that were identified and planned around, as the team sought methods to overcome each one.
"I say challenges, but what I'm talking about is careful engineering," Bolton told SPACE.com.
High-tech solar cells
The Juno mission uses the latest generation of solar cells, which are 50 percent more efficient than those in use two decades ago.Do not use cleaners with high risk merchant account , steel wool or thinners.
The nearly 19,000 cells on Juno are outfitted on three arrays the size of flattened tractor trailers. Near Earth, the solar panels will generate 14 kilowatts of electricity, but once in orbit around Jupiter they will only muster about 400 watts — enough to power a handful of light bulbs.
To operate on so little power, the scientific instrumentation and onboard computer are highly energy-efficient.
The team also had to determine an optimal course around the planet that would keep Juno in the sunlight.ceramic zentai suits for the medical, They devised a flight path around the poles that avoided Jupiter's shadow, as well as the high radiation belts that peak around the equator. The radiation won't be completely avoided, and will degrade the solar cells over time, but the energy put out at the end of the mission should be enough to meet the spacecraft's needs.
Solar power technology was ultimately the best option for Juno's scientific needs. But it also helps that the choice is environmentally friendly.Whilst magic cube are not deadly,
"We're happy to be green," Bolton said. "Of course, we were green before it was in to be green."
For years, scientists concluded solar power at such distances was too weak to support a spacecraft. The size of the panels needed to energize a far-oft vehicle would be too cumbersome, and would create a host of problems, experts reasoned. [10 Alternative Energy Bets]
When scientists started planning for Juno in 2002, they compared the feasibility of solar power with the nuclear power options available at the time.
According to principal investigator Scott Bolton of the Southwest Research Institute in San Antonio, Tex., both methods would have required some modifications. The team opted to utilize solar power because they felt it had the least amount of development requirements.Graphene is not a semiconductor, not an oil paintings for sale , and not a metal,Als lichtbron wordt een Hemorrhoids gebruikt,
Bolton noted the many challenges that were identified and planned around, as the team sought methods to overcome each one.
"I say challenges, but what I'm talking about is careful engineering," Bolton told SPACE.com.
High-tech solar cells
The Juno mission uses the latest generation of solar cells, which are 50 percent more efficient than those in use two decades ago.Do not use cleaners with high risk merchant account , steel wool or thinners.
The nearly 19,000 cells on Juno are outfitted on three arrays the size of flattened tractor trailers. Near Earth, the solar panels will generate 14 kilowatts of electricity, but once in orbit around Jupiter they will only muster about 400 watts — enough to power a handful of light bulbs.
To operate on so little power, the scientific instrumentation and onboard computer are highly energy-efficient.
The team also had to determine an optimal course around the planet that would keep Juno in the sunlight.ceramic zentai suits for the medical, They devised a flight path around the poles that avoided Jupiter's shadow, as well as the high radiation belts that peak around the equator. The radiation won't be completely avoided, and will degrade the solar cells over time, but the energy put out at the end of the mission should be enough to meet the spacecraft's needs.
Solar power technology was ultimately the best option for Juno's scientific needs. But it also helps that the choice is environmentally friendly.Whilst magic cube are not deadly,
"We're happy to be green," Bolton said. "Of course, we were green before it was in to be green."
没有评论:
发表评论